Welcome

Outline:
- What is Pedagogy?
- Brief history of Engineering Education
- Facts about today's Engineering Education
- Best Practices: How we teach today's engineers
Presenters

Fethiye Ozis, Lecturer
Environmental Engineering

John Tingerthal, Associate Professor
Civil Engineering
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help or
Open poll in your web browser
What does Pedagogy mean to you?

- Take a minute to write down your definition of “Pedagogy” in your notes
Pedagogy vs. Andragogy

Pedagogy:
The art and science of teaching children

Andragogy:
Originally referring to the art and science of helping adults learn, currently viewed as a learner-centered model of education

Knowles, 1973
Pratt, 1993
Brief History of Eng. Education

- 1798: West Point
- 1835: 1st Degree (CE)
- 1862: Morrill Land Grant Act
- 1899: 1st Degree
- 1866: 300 grads
- 1889-1913: 1413 grads
- 1909: 1st PE (Wyoming)
- 1918: Mann Report
- 1934: Wikenden Report 3474 grads
- 1944: G.I. Bill
- 1947: Sputnik
- 1955: Grinter Report
- 1957: 45,000 grads
- 1960: Social Activism
- 1970: Research
- 1994: Green Report
- 2005: ABET EC2000, NAE Engineer of 2020
- 2012: ASEE Lohmann-Jameson Report
Five Major Shifts in 100 years

- Emphasis on Hands-on/practical Science and analysis
- Content Learning outcomes
- Emphasis in engineering design
- applying education, learning, and social-behavioral sciences research
- integrating information, computational, and communications technology

http://doi.org/10.1109/JPROC.2012.2190167
Bachelor's degrees conferred by postsecondary institutions (U.S.)

The Countries With The Most Engineering Graduates

Top countries for graduates in engineering, manufacturing and construction*

- Russian Federation: 454,436
- United States: 237,826
- Iran: 233,695
- South Korea: 147,858
- Ukraine: 130,391
- France: 104,746
- Japan: 168,214
- Indonesia: 140,169
- Mexico: 113,944
- Vietnam: 100,390

* 2015 rank out of 124 economies. No data available for China, India

Sources: World Economic Forum 2015/UNESCO Institute for Statistics
Integrating More Design

Design4Practice: Putting the practice back into curriculum

D4P History:
The Design4Practice program was developed in 1994, and was originally intended as a team-taught class that simulated a corporate environment. The classes were multi-disciplinary in that each engineering student regardless of engineering fields participated in the classes. The instructors came from all the engineering fields. The intent was to provide a series of design classes where students would integrate their technical skills learned in their discipline and apply them to team based design challenges. As NAU has grown from a smaller teaching college to a larger research based institution, the Design4Practice program has evolved to meet the changing needs of the industry and society at large.

The D4P Program:
The Design4Practice (D4P) program is a four-class sequence culminating in the senior capstone experience. The D4P courses are designed to prepare students for an environment that requires the synthesis of technical knowledge, skills, and creative problem-solving. The four “pillars” of the D4P Program are: 1) Engineering Design, 2) Communication, 3) Teamwork, and 4) Professionalism.
Facts about Engineering Education

Example of a Classroom Assessment Technique: Preconception Check

- Distribute the papers
- **Red** and **Green** Cards
- Complete the T/F assessment on your own.

- Raise Green Card for True
- Raise Red Card for False
Learner-Centered Education:

Less Us, More Them
Creating student-centered contexts for learning

“I think it’s an exaggeration, but that there's a lot of truth in saying that when you go to school, the trauma is that you must stop learning and you must now accept being taught.”

— Seymour Papert
Weimer (2013)

Learner Centered Teaching is the teaching focused on learning, and when successful, it:

- Engages students in the hard and messy work
- Motivates and empowers students by giving them control over their learning
- Encourages collaboration among the learner community
- Promotes students' reflection about what and how they are learning
- Includes explicit learning skills instruction
Miller (2011)

Recent Findings, Theories and Trends to Watch: (pp 120-121)

- Increased emphasis on the connection between memory and attention
- New understanding of limitations on Working Memory capacity
- New refinements in how we apply theoretical ideas of capacity limitations
- Widespread acceptance of and increased interest in applying the testing effect
- Decreased emphasis on individual learning styles, particularly perceptual learning styles
Student’s motivations are strongly influenced by:

- What they think is important (Value)
- What they believe they can accomplish (Expectancy)

(Parsons, J. E., Futterman, R., Goff, S. B., Kaczala, C. M., & Meece, J. L.; 1983)
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Value

Interest Value + Utility Value + Attainment Value - Cost = Task Value
Role of Educator:

- **Good Practice**

<table>
<thead>
<tr>
<th>Encourages Contacts Between Students and Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develops Reciprocity and Cooperation Among Students</td>
</tr>
<tr>
<td>Uses Active Learning Techniques</td>
</tr>
<tr>
<td>Gives Prompt Feedback</td>
</tr>
<tr>
<td>Emphasizes Time on Task</td>
</tr>
<tr>
<td>Communicates High Expectations</td>
</tr>
<tr>
<td>Respects Diverse Talents and Ways of Learning</td>
</tr>
</tbody>
</table>

Chickering & Gamson (1987)
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Shift in Millennials: Technology

While watching the following video, which practices do you think we are actually using?

On the provided index card, write:

- 2 practices that you think are **prevalent** at universities
- 2 practices that you think are **rare** at universities

<table>
<thead>
<tr>
<th>Prevalent Practices</th>
<th>Rare Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technology Shift in Education:

http://www.youtube.com/watch?v=IoFL5gT_m8I
Five Major Shifts in 100 years

- Emphasis on Hands-on/practical → Science and analysis
- Content → Learning outcomes
- Emphasis in engineering design
- applying education, learning, and social-behavioral sciences research
- integrating information, computational, and communications technology

“The hard and messy work of learning can only be done by the students”

Maryellen Weimer, 2013
Plus
(what worked?)

Delta
(What could be improved?)
THANK YOU!